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Abstract

1 Fiber Bundles

1.1 Definitions and Examples

We are working on a manifold M which we will call our base space. On this, we have
a coordinate bundle:

Definition 1 (Coordinate Bundle). A coordinate bundle consists of

• A total space E

• A base space M

• A fiber F

• A surjection π : E →M called projection to a point p on M so that π−1(p) :=
Ep ∼= F . This is the fiber over p.

• A Lie Group G freely acting on the fiber: G
	
F s.t. gf = f ⇒ g = 1∀f ∈ F .

• A set of open coverings {Uα}α∈I of M with diffeomorphisms φα : Uα × F →
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π−1(Ui) called local trivializations so that the following diagram commutes.

Uα × F π−1(Uα)

Uα

p1

ψα

π

• On p ∈ Uαβ := Uα ∩ Uβ, ψ−1
β ψα acts as a diffeomorphism coinciding with the

action of an element of G on each Ep (we say “fiberwise”).

In this way ψα gives rise to a diffeomorphism between F and Fp given by ψα,Fp(f) =
ψα(p, x)

Fiber bundles generalize the product of two spaces by allowing for local product
structure but much more interesting global “twisted structure”.

From this we can define the vertical component of a point in the total space: fα :
E → F by fα = ψ−1

α,π.

We can also identify ψ−1
β,p ◦ ψα,p with an element in G by gα,β : Uαβ → G.

Proposition 2. gαβ satisfies

• gαα = 1

• gαβ = g−1
βα

• gαβgβγ = gαγ

Moreover

1. gαβfβ = fα
That is, gαβ maps the fiber corresponding to Uβ to the fiber corresponding to Uα.

2. ψj(p, f) = ψi(p, gijf)

Proof. These are all easy to check just by the definition of gαβ as a composition of the
ψα and by invoking the cartesian properties of local trivialization.

The equivalence class of a coordinate bundle on M is called a fiber bundle over
M .

Fiber bundles whose fibers are are vector spaces are called vector bundles. Examples
are the tangent/cotangent spaces to a manifold, and any tensor/symmetric/exterior
powers thereof. We will see that we can view vector fields, p-forms, and many other
interesting, physically-relevant, objects as “slices” or sections of fiber bundles. We
will advance this idea shortly.
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1.2 Principal Bundles

When the fiber F is the structure group itself: F = G, then G obviously has standard
left action on F , and we get the principal bundle P (M,G). That is, over every
point is fibered a copy of G. This will be an object of central interest in the following
lectures.

Proposition 3. The principal bundle is equipped with a natural right action of G, Rg

so that Rg : π−1(Uα)→ π−1(Uα) by acting on the fiber appropriately Rg(p, h) = (p, hg).
It acts smoothly and freely on the principal bundle.

We state the following theorem without proof (c.f. Chapter 9 of Lee’s Introduction
to Smooth Manifolds)

Theorem 4. When G is a compact Lie Group acting smoothly and freely on a manifold
M , the orbit space M/G is a topological manifold with dimension dimM − dimG and
a unique smooth structure so that π : M →M/G is a smooth submersion (differential
is locally surjective).

Otherwise we get “orbitfolds” (consider H/PSL2(R))

Corollary 5. For the principal bundle P (M,G) we get dimP = dimM + dimG

If M,F are two manifolds and G has an action G×F → F , then for an open cover
{Uα} of M with a map gαβ : Uα ∩ Uβ → G we can construct a fiber bundle by first
building the set

X =
⋃
α

Uα × F (1)

and quotienting out by the relation

(x, f) ∈ Uα × F ∼ (x′, f ′) ∈ Uβ × F ⇐⇒ x = x′, f = gαβ(x)f ′ (2)

Then E = X/ ∼ is a fiber bundle over M . We can denote elements of E by [x, f ]
so that

π(x, f) = x, ψα(x, f) = [x, f ]. (3)

Proposition 6. For a fiber bundle π : E → M with overlap functions gαβ : Uαβ → G
between charts, we can form a principal bundle P (M,G) so that

P = X/ ∼, X =
⋃
α

Uα ×G (4)

Note that there was no requirement here that G be compact. We will often deal
with G compact in the future lectures, but when looking at hyperbolic Riemann sur-
faces, it not the case that G is usually compact.
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1.3 Morphisms and Extensions

The morphisms in the category of fiber bundles are called bundle maps:

Definition 7 (Bundle Map). For two fiber bundles π : E →M,π′ : E ′ →M ′ a bundle
map is a smooth map f̄ : E → E ′ that naturally induces a smooth map on the base
spaces so that the following diagram commutes:

E E ′

M M

f̄

π π′

f

Two bundles are equivalent if there is a bundle map so that both f̄ and f are
diffeomorphisms.

If we have a fiber bundle π : E →M and ϕ : N →M for another manifold N , then
we can pull back E to form a bundle over N .

ϕ∗E = {(y, [f, p]) ∈ N × Es.t.ϕ(y) = p} (5)

We have projection on the second factor of ϕ∗E as a map g : ϕ∗E → E.
This is the pullback bundle ϕ∗E.

Definition 8 (Pullback Bundle). For a map ϕ : N →M and E a fiber bundle over M
so that π : E →M , we define the pullback bundle ϕ∗M so that the following diagram
commutes:

ϕ∗E E

N M

g

π′ π

ϕ

We can take products of these bundles as topological spaces in the obvious way:

E × E ′ π×π
′

−−−→M ×M ′ (6)

In the special case where M = M ′ we get

Definition 9 (Direct Sum of Vector Bundles). For E,E ′ vector bundles over M we
can define their sum as E ⊕ E ′ to be M with F ⊕ F ′ fibred over every point.

More compactly, it is the pullback bundle of the map f : M →M ×M
The structure group of E ⊕E ′ is the product G×G′ of the structure groups of the

original bundles and it acts diagonally on their sum.

GE⊕E′ =

{(
gE 0
0 gE

′

)
: gE ∈ G, gE′ ∈ G′

}
(7)

and the transition functions act diagonally in the same way.
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Alternatively we could have defined

Ē = {([p, f ], [p, f ′]) ∈ E × E ′} (8)

which is a bundle over M as well, and its easy to see this is also the direct sum bundle.
Similarly, we can define arbitrary direct sums of bundles recursively:

E1 ⊕ · · · ⊕ Er (9)

For some intuition about when fiber bundles are nontrivial, consider the following
theorem

Theorem 10. Let π : E → M be a fiber bundle over M and consider maps f, g
from N → M so that f, g are homotopic, then the pullback bundles are equivalent:
f ∗E ∼= g∗E over N .

Corollary 11. If M is contractible, every fiber bundle π : E →M is trivial.

1.4 Sections and Lifts

As mentioned before, any specific smooth vector field on a manifold M can be viewed as
a smooth “slice” of the vector bundle of the tangent spaces of M : TM . This motivates
the notion of a section of a fiber bundle that associates to each base point p ∈M an
element f in the fiber Fp, giving together (p, f) ∈ E.

A global section of the fiber bundle π : E → M is a map s : M → E so that
π ◦ s = id. When it’s restricted, s : U ⊆ M → E, we call s a local section. The set
of smooth global sections is denoted by Γ∞(M,E).

Example 12. The set of all smooth r-forms on M is Γ∞(M,Λr(T ∗M)) on which the
structure group acts on each wedge. Note the different action of the structure group
on different r-forms is exactly what makes the components of various r-forms “r-times
covariant”.

When the group is fibered over the manifold, then on the local cartesian structure,
we can easily pick the section p 7→ [p, e].

Proposition 13. For a principal bundle P (M,G), any local trivialization ψ : U×G→
π−1(U) defines a local section by s : p 7→ ψ(p, e) and conversely any local section defines
a trivialization by ψ(p, g) = s(p)g

By using sections, we can prove the existence of lifts. That is, for a principal bundle
P (M,G) over M , and a map ϕ : M → N we can get a principal bundle over N by
forming the projection ϕ ◦ π.
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Proposition 14. For a principal bundle P (M,G) and ϕ : M → N , then ϕ is smooth
iff ϕ ◦ π is smooth according to the following diagram.

P (M,G)

M N

π
ϕ◦π

ϕ

Proof. If ϕ is smooth, then ϕ◦π is a composition of smooth maps. On the other hand,
if ϕ◦π is smooth, then for each point p there is a coordinate neighborhood Uα on which
we have trivial fiber structure. Take a local section sα so that ϕ ◦ π ◦ s = ϕ|Uα .

Proposition 15. For P (M,G) principal and ϕ̃ : P (M,G)→ N a smooth G-invariant
map so that

ϕ̃(xg) = φ̃(x), x ∈ P (M,G) (10)

then there is a unique map φ induced on the base space so that the following diagram
commutes:

P (M,G)

M N

π
ϕ̃

ϕ

and is given by φ̃([x, g]) = ϕ(x). This is well-defined.

2 Lie Groups and Algebras

Although standard knowledge on the definition of a Lie Group/Algebra is assumed,
let’s try to motivate the ideas within this field in a more geometric way than is often
done.

Consider a manifold M , and consider Vect(M), the space of all smooth vector fields
on M . For a map ϕ : M → N we have a notion of pushforward ϕ∗ : Vect(M) →
Vect(N) on vector fields given by their actions on functions as

[ϕ∗(v)](f) = v(ϕ∗(f)) (11)

A smooth vector field X on M gives rise to flows that are solutions to the differential
equation of motion

d

dt
f(γ(t)) = Xf. (12)

One could argue, more strongly, that in fact the entire field of ordinary differential
equations has an interpretation as equations of motion along flows of vector fields.
Such a viewpoint has brought forward the lucrative insights of symplectic geometry.
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The motion along this flow is expressed as the exponential:

f(γ(t)) = etXf(p), p = γ(0) (13)

Now consider two vector fields X, Y on M . Let Y flow along X so we move along
X giving:

etXY = Y (γ(t)) ∈ Tγ(t)M (14)

Note that the reverse flow e−tX maps Tγ(t)M → Tγ(0)M = TpM , so acts by pushforward
on etXY equivalent to:

etXY e−tX ∈ Tp (15)

We can compare this to Y and take the local change by dividing through by t as t→ 0,
giving the Lie derivative

LXY :=
etXY e−tX − Y

t
(16)

It is easy to check that this is in fact antisymmetric and gives rise to a bilinear form
on Vect(M)

[X, Y ] := LXY (17)

A vector space endowed with such a bilinear form and satisfying the Jacobi identity is
a Lie algebra.

Most important is when M itself has group structure, so is a Lie group, which we
will denote by G. Then the vector fields on G of course also form a Lie algebra, just
by virtue of the manifold structure of G.

We state the following proposition without proof

Proposition 16. Let ϕ : M → N be a diffeomorphism of Lie groups.
Then ϕ∗ : Vect(M)→ Vect(N) is a homomorphism of Lie algebras.

For a Lie group, group elements induce automorphisms on the manifold by left
multiplication, denoted Lg and by right multiplication Rg:

Rg : G→ G, g : h 7→ gh

Lg : G→ G, g : h 7→ hg
(18)

We have that each group element induces (by pushforward) a map between tangent
spaces

(Lg)∗ : ThG→ TghG

(Rg)∗ : ThG→ ThgG
(19)

A vector field X is left-invariant if (Lg)∗X(h) = X(gh).
By the proposition, we get that (Lg)∗[X, Y ] = [(Lg)∗X, (Lg)∗Y ] so these left-

invariant vector fields in fact form a Lie algebra for the group. It exactly the vector
fields representing the symmetries of G.
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In local coordinates, the commutator can be written as:

X =Xµ∂µ, Y = Y µ∂µ

[X, Y ] =(Xν∂νY
µ − Y ν∂νX

µ)∂µ
(20)

Left-invariant vectors flow consistent with the group action:

(Lg)∗X(e) = X(g) (21)

The set of all left-invariant vector fields can be uniquely extracted from their value at
the identity by this rule, and in fact for any vector x ∈ TeG, there is a corresponding
left-invariant vector field X(g) = (Lg)∗x. Therefore the tangent space to the identity
gives rise to a Lie algebra which we will call the Lie algebra of G and denote by g. This
Lie algebra (often referred to as the Lie algebra g associated to the group G) is finite
dimensional when G is.

Now because we define the Lie algebra as the “tangent space to the identity”, it is
worth asking “how does the Lie algebra appear at a generic point, g, on the group?”.
The idea is to bring that vector back to the identity using G and see what it looks like.

This is accomplished by using the Maurer-Cartan form Θ, which is a g-valed
1-form on G so that

Θ(g) = (Lg−1)∗ (22)

Note that this maps from Vect(G) → g. It takes a vector v at point g and traces it
back to the natural vector at the identity that would have gotten pushed forward to v
under g.

Proposition 17 (Properties of exp). For G a compact and connected Lie group, with
Lie algebra g, we have a map exp : g→ G.

1. [X, Y ] = 0⇔ eXeY = eY eX

2. The map t→ exp(tX) is a homomorphism from R to G.

3. If G is connected then exp generates G as a group, meaning all elements can be
written as some product exp(X1) . . . exp(Xn) for Xi ∈ g

4. If G is connected and compact then exp is surjective. It is almost never injective.

Example 18. The Lie algebra associated to the Lie group U(n) of unitary matrices
is u(n) of antihermitian matrices. This is the same as the Lie algebra for the group
SU(n)

Definition 19 (Adjoint Action on G). For each g we can consider the homomorphism
Adg : h 7→ ghg−1 or Adg = Lg ◦Rg−1 . This defines a representation

Ad : g → Diff(G) (23)
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Definition 20 (Adjoint Representation of g). The pushforward of this action gives
rise to the adjoint representation of the Lie group g by

(Adg)∗ = (Lg ◦Rg−1)∗ (24)

From the product rule, this acts as [g,−] at the identity. We denote this as

ad : g→ End g (25)

The Jacobi identity ensures that ad is a homomorphism. If the center of G is zero
then ad is faithful and we have an embedding into GL(n). This is nice because it
also shows that modulo a central extension, every Lie algebra can be represented into
GL(n), a weaker form of Ado’s theorem.

Moreover the adjoint representation gives rise to a natural metric on G called the
Killing Form given by

κ(X, Y ) = Tr(ad(X)ad(Y )) (26)

3 Associated Bundles

Take a principal bundle P (M,G) and let F be a space with associated automorphism
Aut(F ) so that ρ : G→ Aut(F ) is a faithful representation. Then g ·f is a well-defined
notion, with free action, and we can consider the (right) action of G on P (M,G)× F
by

g · ([p, h], f) = ([p, hg], ρ(g)−1f) (27)

This is a free action as well. Then if G is compact (important) we have the orbit space

Eρ = P (M,G)× F/G (28)

is a manifold

Theorem 21. The space Eρ can be made into a fiber bundle over M with fiber F called
the associated fiber bundle of P (M,G).

Proof. We make P × F into a bundle by defining the projection

πρ([p, h], f) = p (29)

and trivializations ψα : Uα × F → π−1(U)α by

(ψρ)α(p, f) = ([p, sα(p)], f) (30)

and inverse
(ψρ)

−1
α ([p, g], f) = [p, ρ(g)f ] (31)

From this, if F is a group then we can make π−1
ρ (p) into a group at each fiber in

the obvious way, defining [(p, v)][p, w] = [p, vw]. And if F is a vector space then we
can do the same construction to make each fiber have vector space structure.

The two associated bundles that we’ll care about are P (M,G)×AdG and P (M,G)×ad

g.
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